-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020309

The transverse displacement y(x,t) of a wave on a string is given by
straight y left parenthesis straight x comma straight t right parenthesis space equals space straight e to the power of negative left parenthesis ax squared plus bt squared space plus space 2 square root of ab space xt right parenthesis end exponent
This represents a

  • wave moving in +x direction with speed square root of straight a over straight b end root

  • wave moving in -x direction with speed square root of b over a end root

  • standing wave frequency square root of straight a

  • Standing wave of frequency square root of 1 over straight b end root

Solution

B.

wave moving in -x direction with speed square root of b over a end root

Given wave is,
straight y space left parenthesis straight x comma straight t right parenthesis space equals space straight e to the power of negative left parenthesis ax squared space plus bt squared space plus 2 square root of ab space xt right parenthesis end exponent
space equals space straight e to the power of negative left parenthesis square root of ax space plus square root of bt right parenthesis squared end exponent
It space is space straight a space function space of space type space straight y space equals space straight f left parenthesis ωt space plus kx right parenthesis
space equals space straight f open parentheses straight t minus straight x over straight v close parentheses
Where space straight v space is space the space wave space velocity.
therefore space straight y space left parenthesis straight x comma straight t right parenthesis space represents space wave space travelling space along space minus straight x space direction
Speed space of space wave space space equals space straight omega over straight k space equals space fraction numerator square root of straight b over denominator square root of straight a end fraction space equals space square root of straight b over straight a end root