-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020230

The transverse displacement of a string (clamped at its both ends) is given by

straight y space left parenthesis straight x comma straight t right parenthesis space equals space 0.06 space sin space 2 over 3 space straight x space cos space left parenthesis 120 space straight pi space straight t right parenthesis
Where and are in m and in s.

The length of the string is 1.5 m and its mass is 3.0 ×10–2 kg. 

Answer the following:

(a) Does the function represent a travelling wave or a stationary wave?

(b) Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?

(c) Determine the tension in the string.

Solution
(a) The general equation representing a stationary wave is given by the displacement function: 
y (xt) = 2a sin kx cos ω

This equation is similar to the given equation, 
         straight y space left parenthesis straight x comma straight t right parenthesis space equals space 0.06 space sin space 2 over 3 space straight x space cos space left parenthesis 120 space straight pi space straight t right parenthesis
Hence, the given equation represents a stationary wave.
 
(b)
A wave travelling along the positive x-direction is given as: 
y1 = a sin (ωt kx
The wave travelling along the positive x-direction is given as: 
y2 = a sin (ωt + kx
The supposition of these two waves yields: 
y = y1 + y2
    = 
a sin (ωt kx) - a sin (ωt + kx
   = a sin (ωt) cos (kx) - a sin (kx) cos (ωt) -  a sin (ωt) cos (kx) - a sin (kx) cos (ωt
   = 2 a sin (kx) cos (ωt
negative space 2 space straight a space sin space open parentheses fraction numerator 2 straight pi over denominator straight lambda end fraction close parentheses space cos space left parenthesis space 2 πνt right parenthesis space space space space space space space space space space space space space space space... space left parenthesis straight i right parenthesis
The space transverse space displacement space of space the space string space is space given space as colon

straight y space left parenthesis straight x comma space straight t right parenthesis thin space equals space 0.06 space sin space open parentheses fraction numerator 2 straight pi over denominator 3 end fraction space straight x close parentheses space space cos space left parenthesis 120 space straight pi space straight t right parenthesis space space space space space space space space space space... space left parenthesis ii right parenthesis space

Comparing space equations space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis comma space we space have space

fraction numerator 2 straight pi over denominator straight lambda end fraction space equals space fraction numerator 2 straight pi over denominator 3 end fraction

Therefore comma space

Wavelength comma space straight lambda space equals space 3 space straight m space
It space is space given space that comma space

120 space straight pi space equals space 2 πν space

Frequency comma space straight nu space equals space 60 space Hz space

Wave space Speed comma space straight v space equals space νλ space equals space 60 space straight x space 3 space equals space 180 space straight m divided by straight s

Therefore,
Wavelength, λ = 3 m 
It is given that, 
120π = 2πν 
Frequency, ν = 60 Hz 
Wave speed, νλ 

                   = 60 × 3
                   = 180 m/s
(c) The velocity of a transverse wave travelling in a string is given by the relation, 
v = square root of straight T over straight mu end root                               ...(i) 

where, 
Velocity of the transverse wave, v = 180 m/s 
Mass of the string, m = 3.0 × 10–2 kg 
Length of the string, = 1.5 m 
Mass per unit length of the string, µ = m/l 

                                               =fraction numerator 3.0 over denominator 1.5 space cross times space 10 to the power of negative 2 end exponent end fraction

                                               = 2 × 10-2 kg m-1
Tension in the string = 

From equation (i), tension can be obtained as
T = v2μ 

   = (180)2 × 2 × 10–2 

   = 648 N