-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020221

A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation acos (ωt) and note that the initial velocity is negative.]

Solution
The displacement equation for an oscillating mass is given by, 
x = Acos(ωt + θ
where, 
A is the amplitude 
x is the displacement 
θ is the phase constant
Velcoity, v = dx/dt = -Aωsin(ωt + θ
At t = 0, x = x

x0 = Acos θ = x0        ...(i) 

and,
dx over dt = -v0 = Aωsinθ 

Asinθ v0/ω            ...(ii) 
Squaring and adding equations (i) and (ii), we get

straight A squared space open parentheses cos squared space straight theta space plus space sin squared straight theta close parentheses space equals space straight x subscript straight o squared space plus space open parentheses straight v subscript straight o close parentheses squared over straight omega squared space
therefore space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight A space equals space square root of straight x subscript straight o squared space plus space open parentheses straight v subscript straight o over straight omega close parentheses squared end root
So, A is the required amplitude of oscillation.