Sponsor Area

Mechanical Properties Of Fluids

Question
CBSEENPH11020216

An air chamber of volume has a neck area of cross section into which a ball of mass just fits and can move up and down without any friction (Fig.14.33). Show that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressure-volume variations of air to be isothermal [see Fig. 14.33]. 






Solution
Volume of the air chamber = V

Area of cross-section of the neck = 

Mass of the ball = 

The pressure inside the chamber is equal to the atmospheric pressure. 
Let the ball be depressed by units.
As a result of this depression, there would be a decrease in the volume and an increase in the pressure inside the chamber. 
Decrease in the volume of the air chamber, ΔV = ax 

Volumetric strain = Change in volume/original volume 
⇒                ΔV/V = ax/

Bulk modulus of air, B = Stress/Strain = fraction numerator straight rho over denominator begin display style bevelled ax over straight V end style end fraction 

In this case, stress is the increase in pressure.
The negative sign indicates that pressure increases with decrease in volume. 
p = -Bax/

The restoring force acting on the ball, F = p × 

                                                           equals space minus Bax over straight V space cross times space a space

equals space minus fraction numerator B a x squared over denominator V end fraction        ...(i) 

In simple harmonic motion, the equation for restoring force is, 
F = -kx                                                          ...(ii) 

where, k is the spring constant.
Comparing equations (i) and (ii), we get:
k = Ba2/

Time Period,

therefore space straight T space equals space 2 straight pi square root of straight m over straight k end root space

space space space space space space space space space equals space space 2 straight pi space square root of Vm over Ba squared end root