-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020214

Cylindrical piece of cork of density of base area and height floats in a liquid of density ρ1. The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period,

straight T space equals space 2 straight pi space fraction numerator hρ over denominator straight rho subscript 1 straight g end fraction
 
where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).

Solution
Given,
Base area of the cork = A
Height of the cork = h
Density of the liquid = ρ
Density of the cork = ρ

In equilibrium:
Weight of the cork = Weight of the liquid displaced by the floating cork
Let the cork be depressed slightly by x.
As a result, some extra water of a certain volume is displaced.
Hence, an extra up-thrust acts upward and provides the restoring force to the cork.
Up-thrust = Restoring force, F = Weight of the extra water displaced 
F = ­–(Volume × Density × g
Volume = Area × Distance through which the cork is depressed
Volume = Ax 

Therefore, 
F = – A ρg                              ...(i) 

According to the force law: 
F = kx 

k = F/

where, k is constant 
k = F/x = -Aρg                          ...(ii) 

The time period of the oscillations of the cork: 
T = 2π √m/                              ...(iii) 

where,
m = Mass of the cork 
   = Volume of the cork × Density  
   = Base area of the cork × Height of the cork × Density of the cork
   = Ahρ 

Hence, the expression for the time period is given by, 
straight T space equals space 2 straight pi space square root of fraction numerator Ahρ over denominator Aρ subscript 1 straight g end fraction end root space equals space 2 straight pi space square root of fraction numerator hρ over denominator straight rho subscript 1 straight g end fraction end root space