-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020205

Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial (= 0) position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anticlockwise in every case: (is in cm and is in s). 

(a) = –2 sin (3+ π/3) 
(b) = cos (π/6 – t
(c) = 3 sin (2π+ π/4) 
(d) = 2 cos πt

Solution
 
(a) 
 straight x space equals space minus space 2 space sin space open parentheses 3 straight t space plus straight pi over 3 close parentheses space

space space equals space plus space 2 space cos space open parentheses 3 straight t space plus space straight pi over 3 plus straight pi over 2 close parentheses

space space equals space 2 space cos space open parentheses 3 straight t space plus space fraction numerator 5 straight pi over denominator 6 end fraction close parentheses 
If this equation is compared with the standard SHM equation, 
straight x space equals space straight A space cos space open parentheses fraction numerator 2 straight pi over denominator straight T end fraction straight t space plus space straight ϕ close parentheses space

We get, 
Amplitude, = 2 cm 
Phase angle, Φ = 5π/6 = 150° 
Angular velocity = ω = 2π/= 3rad/sec
 
The motion of the particle can be plotted as shown in fig. 10(a). 
b) 
straight x space equals space cos space open parentheses straight pi over 6 minus space straight t close parentheses space
space space equals space cos space open parentheses straight t space minus straight pi over 6 close parentheses
If this equation is compared with the standard SHM equation, 
straight x space equals space straight A space cos space open parentheses fraction numerator 2 straight pi over denominator straight T end fraction straight t space plus space straight ϕ close parentheses comma space then space we space get 
Amplitude, A = 1
Phase angle, Φ = -π/6 = -30°. 
Angular velocity, ω = 2π/T = 1 rad/s. 
The motion of the particle can be plotted as shown in fig. 10(b).
c) 
straight x space equals space 3 space sin space open parentheses 2 πt space plus straight pi over 4 close parentheses space

space space space equals space minus space 3 space cos space open square brackets space open parentheses 2 πt space plus straight pi over 4 close parentheses space plus straight pi over 2 close square brackets space

space space space equals space minus space 3 space cos space open parentheses 2 πt space plus fraction numerator 3 straight pi 4 over denominator 4 end fraction close parentheses
If this equation is compared with the standard Simple Harmonic Motion the equation is, 
straight x space equals space straight A space cos space open parentheses fraction numerator 2 straight pi over denominator straight T end fraction straight t space plus space straight ϕ close parentheses comma space then space we space get 
Amplitude, A = 3 cm
Phase angle, Φ = 3π/4 = 135°
Angular velocity, ω = 2π/T = 2 rad/s.
The motion of the particle can be plotted as shown in fig. 10(c).
d) 
straight x space equals space 2 space cos space πt
If this equation is compared with the SHM equation, we get
straight x space equals space straight A space cos open parentheses fraction numerator 2 straight pi over denominator straight T end fraction straight t space plus space straight ϕ close parentheses, we get
Amplitude, A = 2 cm 
Phase angle, Φ = 0 
Angular velocity, ω = π rad/s. 
The motion of the particle can be plotted as shown in fig. 10(d).