-->

Units And Measurement

Question
CBSEENPH11020297

A diatomic molecule is made of two masses m1 and m2 which are separated by a distance r. If we calculate its rotational energy by applying Bohr's rule of angular momentum quantization, its energy will be given by (n is an integer)

  • fraction numerator left parenthesis straight m subscript 1 plus straight m subscript 2 right parenthesis squared straight n squared straight h squared over denominator 2 straight m subscript 1 superscript 2 straight m subscript 2 superscript 2 straight r squared end fraction
  • fraction numerator straight n squared straight h squared over denominator 2 left parenthesis straight m subscript 1 plus straight m subscript 2 right parenthesis straight r squared end fraction
  • fraction numerator 2 straight n squared straight h squared over denominator left parenthesis straight m subscript 1 plus straight m subscript 2 right parenthesis straight r squared end fraction
  • fraction numerator left parenthesis straight m subscript 1 plus straight m subscript 2 right parenthesis straight n squared straight h squared over denominator 2 straight m subscript 1 straight m subscript 2 straight r squared end fraction

Solution

D.

fraction numerator left parenthesis straight m subscript 1 plus straight m subscript 2 right parenthesis straight n squared straight h squared over denominator 2 straight m subscript 1 straight m subscript 2 straight r squared end fraction

Rotational kinetic energy of the two body system rotating about their centre of mass is
RKE space equals space 1 half μω squared straight r squared
where comma space straight mu space equals space fraction numerator straight m subscript 1 straight m subscript 2 over denominator straight m subscript 1 plus straight m subscript 2 end fraction equals space reduced space mass
and space angular space momentum comma space straight L space equals space μωr squared space equals space fraction numerator nh over denominator 2 straight pi end fraction
straight omega space equals fraction numerator nh over denominator 2 πμr squared end fraction
therefore space RKE space equals space 1 half μω squared straight r squared space equals space 1 half space straight mu. open parentheses fraction numerator nh over denominator 2 πμr squared end fraction close parentheses squared straight r squared
space equals fraction numerator straight n squared straight h squared over denominator 8 straight pi squared μr squared end fraction space equals space fraction numerator straight n squared straight ħ squared over denominator 2 μr squared end fraction space open parentheses where comma straight ħ space equals space fraction numerator straight h over denominator 2 straight pi end fraction close parentheses
fraction numerator left parenthesis straight m subscript 1 plus straight m subscript 2 right parenthesis straight n squared straight ħ squared over denominator 2 straight m subscript 1 straight m subscript 2 straight r squared end fraction