The pressure that has to be applied to the ends of a steel wire of length 10 cm to keep its length constant when its temperature is raised by 100°C is (For steel Young’s modulus is 2×1011 N m–2 and coefficient of thermal expansion is 1.1×10–5 K–1 )
-
2.2 x 108 Pa
-
2.2 x 109 Pa
-
2.2 x 107 Pa
-
2.2 x 106 Pa
A.
2.2 x 108 Pa
According to Hooke's law, i.e,
If the rod is compressed, then compressive stress and strain appear. Their ratio Y is same as that for the tensile case.
Give, length of a steel wire (L) = 10 cm,
Temperature (θ) = 100oC
As length is constant,
∴
Now, pressure = stress =y x strain
[Given, Y = 2 x 1011N/M2 and α = 1.1 x 10-5 K-1]
= 2 x 1011 x1.1 x 10-5 x 100
=2.2 x 108