-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020245

One end of a long string of linear mass density 8.0 × 10–3 kg m–1is connected to an electrically driven tuning fork of frequency 256 Hz. The other end passes over a pulley and is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At = 0, the left end (fork end) of the string = 0 has zero transverse displacement (= 0) and is moving along positive y-direction. The amplitude of the wave is 5.0 cm. Write down the transverse displacement as function of and that describes the wave on the string.

Solution
The equation of a travelling wave propagating along the positive y-direction is given by the displacement equation: 
y (xt) = a sin (wt – kx)                             … (i) 

Linear mass density, μ = 8.0 × 10-3 kg m-1 
Frequency of the tuning fork, ν = 256 Hz 
Amplitude of the wave, = 5.0 cm
                                       = 0.05 m           … (ii) 

Mass of the pan, = 90 kg 
Tension in the string, T = mg
                                    = 90 × 9.8
                                     = 882 N 
The velocity of the transverse wave v, is given by the relation, 

straight v space equals space square root of straight t over straight mu end root space

space space equals space fraction numerator 882 over denominator 8.0 space straight x space 10 to the power of negative 3 end exponent end fraction space equals space 332 space straight m divided by straight s

Angular space frequency comma space straight omega space equals space 2 πν space

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 space straight x space 3.14 space straight x space 256 space space

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1608.5 space

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1.6 space straight x space 10 cubed space rad divided by sec space space space space space space space space... space left parenthesis iii right parenthesis thin space

Wavelength comma space straight lambda space equals space straight v over bold nu space equals space 332 over 256 space straight m

therefore space Propagation space constant comma space straight k space equals space fraction numerator 2 straight pi over denominator straight lambda end fraction

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 2 space cross times space 3.14 over denominator begin display style bevelled 332 over 256 end style end fraction space

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 4.84 space straight m to the power of negative 1 end exponent space space space space space space space space space space space space space... space left parenthesis iv right parenthesis thin space

Substituting the values from equations (ii)(iii), and (iv) in equation (i), we get the displacement equation, 
(xt) = 0.05 sin (1.6 × 103t – 4.84 x) m.