-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020243

A travelling harmonic wave on a string is described by: 


straight y space left parenthesis straight x comma straight t right parenthesis thin space equals space 7.5 space sin space left parenthesis 0.0050 space straight x space plus space 12 space straight t space plus space straight pi over 4 right parenthesis

(a) What are the displacement and velocity of oscillation of a point at = 1 cm, and t = 1 s? Is this velocity equal to the velocity of wave propagation?

(b) Locate the points of the string which have the same transverse displacements and velocity as the x =1 cm point at t = 2 s, 5 s and 11 s.

Solution
(a) The given harmonic wave is:

straight y space left parenthesis straight x comma straight t right parenthesis thin space equals space 7.5 space sin space left parenthesis 0.0050 space straight x space plus space 12 space straight t space plus space straight pi over 4 right parenthesis space
For space straight x space equals space 1 space cm space and space straight t space equals space 1 space straight s comma

straight y space left parenthesis 1 comma 1 right parenthesis space equals space 7.5 space sin space left parenthesis 0.0050 space straight x space plus space 12 space plus space straight pi over 4 right parenthesis space
space space space space space space space space space space space space equals space 7.5 space sin space straight theta

where comma space

straight theta space equals space 12.0050 space plus space straight pi over 4 space
space space space space equals space 12.0050 space plus space fraction numerator 3.14 over denominator 4 end fraction
space space space space equals space 12.79 space rad

space space space space equals fraction numerator 180 over denominator 3.14 end fraction space straight x space 12.79 space equals space 732.81 to the power of straight o space

therefore space straight y space equals space left parenthesis 1 comma 1 right parenthesis space equals space 7.5 space sin space left parenthesis 732.81 to the power of straight o space right parenthesis

space space space space space space space space equals space 7.5 space sin space left parenthesis 90 space cross times space 8 space plus space 12.81 to the power of straight o right parenthesis space

space space space space space space space space equals space 7.5 space sin space space 12.81 to the power of straight o space

space space space space space space space space equals space 7.5 space cross times space 0.2217 space

space space space space space space space space equals space 1.6629 space tilde space 1.663 space cm

Velocity space of space oscillation space at space any space point space is space given space by comma space

straight v space equals space fraction numerator d over denominator d straight t end fraction open square brackets 7.5 space sin space open parentheses space 0..50 space straight x space plus space 12 space straight t space plus space straight pi over 4 close parentheses close square brackets

space space space equals space 7.5 space cross times space 12 space cos space open parentheses 0.0050 space straight x space plus space 12 space straight t space plus space straight pi over 4 close parentheses
At space straight x space equals space 1 space cm space and space straight t equals 1 space sec comma space we space have

straight v space equals space straight y space left parenthesis 1 comma 1 right parenthesis space equals space 90 space cos space open parentheses 12.005 space plus space straight pi over 4 close parentheses

= 90 coss (732.81°) = 90 cos (90 × 8 + 12.81°) 
= 90 cos (12.81°) 
= 90 × 0.975 =87.75 cm/s 
Now, the equation of a propagating wave is given by, 
y (xt) = asin (kx + wt + Φ
where, 
   k = 2π/λ 

∴ λ = 2π/

and,
   ω = 2π

Therefore, 
   v = ω/2π 
Speed, v = vλ = ω/

where, 
ω = 12rad/s 
k = 0.0050 m-1 

Therefore, 
v = 12/0.0050 = 2400 cm/s 
Hence, the velocity of the wave oscillation at x = 1 cm and t = 1s is not equal to the velocity of the wave propagation. 
(b) Propagation constant is related to wavelength as, 
   k = 2π/λ 

∴ λ = 2π/= 2 × 3.14 / 0.0050 
     = 1256 cm = 12.56 m \
Therefore, all the points at distance nλ (n = ±1, ±2, .... and so on), i.e. ± 12.56 m, ± 25.12 m, … and so on for x = 1 cm, will have the same displacement as the x = 1 cm points at t = 2 s, 5 s, and 11 s.