-->

Units And Measurement

Question
CBSEENPH11020137

The oxygen molecule has a mass of 5.30 × 10–26 kg and a moment of inertia of 1.94×10–46 kg m2 about an axis through its centre perpendicular to the lines joining the two atoms. Suppose the mean speed of such a molecule in a gas is 500 m/s and that its kinetic energy of rotation is two thirds of its kinetic energy of translation. Find the average angular velocity of the molecule.
 

Solution
Mass of an oxygen molecule, m = 5.30 × 10–26 kg
Moment of inertia, I = 1.94 × 10–46 kg m

Velocity of the oxygen molecule, v = 500 m/s 
The separation between the two atoms of the oxygen molecule = 2r  
Mass of each oxygen atom = straight m over 2
Hence, moment of inertia I, is calculated as
(straight m over 2)r2 + (straight m over 2)r2 = mr

                     r = open parentheses straight I over straight m close parentheses to the power of begin inline style bevelled 1 half end style end exponent 
open parentheses fraction numerator 1.94 space straight x space 10 to the power of negative 46 end exponent over denominator 5.36 space straight x space 10 to the power of negative 26 end exponent end fraction close parentheses to the power of begin inline style bevelled 1 half end style end exponent =  0.60 × 10-10 m 
It is given that, 
       KErot = open parentheses 2 over 3 close parenthesesKEtrans 

open parentheses 1 half close parentheses I ω2 = open parentheses 2 over 3 close parentheses ×open parentheses 1 half close parentheses × mv

     mr2ω2 =open parentheses 2 over 3 close parenthesesmv

           ω =open parentheses 2 over 3 close parentheses to the power of begin inline style bevelled 1 half end style end exponent open parentheses straight v over straight r close parentheses 
              =open parentheses 2 over 3 close parentheses to the power of begin inline style bevelled 1 half end style end exponentopen parentheses fraction numerator 500 over denominator 0.6 space straight x space 10 to the power of negative 10 end exponent end fraction close parentheses
              = 6.80 × 1012 rad/s.