-->

Units And Measurement

Question
CBSEENPH11020135

A solid sphere rolls down two different inclined planes of the same heights but different angles of inclination.

(a) Will it reach the bottom with the same speed in each case?

(b) Will it take longer to roll down one plane than the other?

(c) If so, which one and why?

Solution
(a) Mass of the sphere = m

Height of the plane = h

Velocity of the sphere at the bottom of the plane = v

At the top of the plane, the total energy of the sphere = Potential energy = mgh

At the bottom of the plane, the sphere has both translational and rotational kinetic energies. 
Hence,
Total energy = 1 halfmv2 + 1 half I ω2

Using the law of conservation of energy, 
1 halfmv2 + 1 half I ω2 = mgh 
For a solid sphere, the moment of inertia about its centre, I = open parentheses 2 over 5 close parenthesesmr2 
Hence, equation (i) becomes
1 halfmr2 +1 half [open parentheses 2 over 5 close parenthesesmr2] ω2  =  mgh 

             1 halfv2 + open parentheses 1 fifth close parenthesesr2ω2  =  gh 
But we have the relation, v = rω 
∴      1 halfv2 + open parentheses 1 fifth close parenthesesv2  =  gh 

                  v(7 over 10) = gh 

                             v =square root of 10 over 7 end rootgh 

Hence, the velocity of the sphere at the bottom depends only on height (h) and acceleration due to gravity (g).
Both these values are constants.
Therefore, the velocity at the bottom remains the same from whichever inclined plane the sphere is rolled.
(b) Consider two inclined planes with inclinations θand θ2, related as, 
                        θ1 < θ

The acceleration produced in the sphere when it rolls down the plane inclined at θ1 is, 
                      a1 = g sin θ

The various forces acting on the sphere are shown in the following figure.


 
R1 is the normal reaction to the sphere.
Similarly, the acceleration produced in the sphere when it rolls down the plane inclined at θ2 is, 
                       a2 = g sin θ
The various forces acting on the sphere are shown in the following figure.

 
R2 is the normal reaction to the sphere. 
θ2 > θ1; sin θ2 > sin θ1                          ... (i
∴ a2 > a1                                                … (ii
Initial velocity, = 0 
Final velocity, v = Constant 
Using the first equation of motion, we can obtain the time of roll as
v = u + at 

∴ t ∝ (1/α) 
For inclination θ1 : 
                      t1 ∝ (1/α1
For inclination θ2 : 
                       t2 ∝ (1/α2
From above equations, we get, 
                           tt

Hence, the sphere will take a longer time to reach the bottom of the inclined plane having the smaller inclination.