-->

Units And Measurement

Question
CBSEENPH11020130

(a) A child stands at the centre of a turntable with his two arms outstretched. The turntable is set rotating with an angular speed of 40 rev/min. How much is the angular speed of the child if he folds his hands back and thereby reduces his moment of inertia to 2/5 times the initial value? Assume that the turntable rotates without friction.

(b) Show that the child’s new kinetic energy of rotation is more than the initial kinetic energy of rotation. How do you account for this increase in kinetic energy?
 

Solution
(a) 
Initial angular velocity, ω1= 40 rev/min 
Final angular velocity = ω

The moment of inertia of the boy with stretched hands = I

The moment of inertia of the boy with folded hands = I

The two moments of inertia are related as, 
                         I2 = open parentheses 2 over 5 close parentheses I1
Since no external force acts on the boy, the angular momentum L is a constant. 
Hence, for the two situations, 
            I2ω2  =  I1 ω

                ω2 = open parentheses straight I subscript 1 over straight I subscript 2 close parentheses ω

                     equals space open square brackets fraction numerator straight I subscript 1 over denominator begin display style bevelled 2 over 5 end style space straight I subscript 1 end fraction close square brackets space straight x space 40 space
equals space open parentheses 5 over 2 close parentheses space straight x space 40 space
equals space 100 space rev divided by min 

(b) 
Final K.E. = 2.5 Initial K.E.
Final kinetic rotation, EF = (1/2) I2 ω2

Initial kinetic rotation, EI =  (1/2) I1 ω12 
    straight E subscript straight f over straight E subscript straight i =open parentheses 1 half close parentheses I2 ω2/ open parentheses 1 half close parentheses I1 ω1

         =open parentheses 2 over 5 close parentheses I1 (100)2 / I1 (40)

         = 2.5 
Therefore, 
EF = 2.5 E

The increase in the rotational kinetic energy is attributed to the internal energy of the boy.