-->

Units And Measurement

Question
CBSEENPH11020128

Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a greater angular speed after a given time?

Solution
Let m and r be the respective masses of the hollow cylinder and the solid sphere. 
The moment of inertia of the hollow cylinder about its standard axis, I1 = mr

The moment of inertia of the solid sphere about an axis passing through its centre, I2 = open parentheses 2 over 5 close parenthesesmr

We have the relation, 
τ = Iα 

where, 
α = Angular acceleration, 
τ = Torque, 
I = Moment of inertia, 
For the hollow cylinder, τ1 = Iα1
For the solid sphere, τn = Iαn
As an equal torque is applied to both the bodies, τ= τ2, 

∴      straight alpha subscript 2 over straight alpha subscript 1  = straight I subscript 1 over straight I subscript 2  = fraction numerator MR squared over denominator begin display style bevelled 2 over 5 end style space MR squared end fraction 
            α2 > α1                                      ...(i) 

Now, using the relation, 
ω = ω0 + α

where,
ω0 = Initial angular velocity 
  t = Time of rotation 
 ω = Final angular velocity 
For equal ω0 and t, we have
    ω ∝ α                                                 … (ii) 

From equations (i) and (ii)
ω2 > ω

Hence, the angular velocity of the solid sphere will be greater than that of the hollow cylinder.