-->

Units And Measurement

Question
CBSEENPH11020125

A non-uniform bar of weight W is suspended at rest by two strings of negligible weight as shown in Fig.7.39. The angles made by the strings with the vertical are 36.9° and 53.1° respectively. The bar is 2 m long. Calculate the distance d of the centre of gravity of the bar from its left end.


Solution
The free body diagram of the bar is shown in the following figure.



Length of the bar, l = 2 m 
Tand T2 are the tensions produced in the left and right strings respectively.
At translational equilibrium, we have
T1 Sin 36.90 = T2 Sin 53.1

      straight T subscript 1 over straight T subscript 2 = 4 over 3 
⇒      T1 = open parentheses 4 over 3 close parentheses T2
For rotational equilibrium, on taking the torque about the centre of gravity, we have
      T1 (Cos 36.9) × d = T2 Cos 53.1 (2 - d) 
            T1 × 0.800 d = T2 × 0.600 (2 - d
  open parentheses 4 over 3 close parentheses × T2 × 0.800d = T2 (0.600 × 2 - 0.600d
          1.067d + 0.6d = 1.2 
∴                         d = 1.2 / 1.67 
                             = 0.72 m 
Hence, the centre of gravity of the given bar lies 0.72 m from its left end.