-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020197

Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant): 

(a) sin ω– cos ω

(b) sin3 ω

(c) 3 cos (π/4 – 2ωt

(d) cos ω+ cos 3ωt + cos 5ω

(e) exp (–ω2t2

Solution
(a) SHM 
The given function is, 
       sin ω– cos ω
equals space square root of 2 open square brackets fraction numerator 1 over denominator square root of 2 end fraction space sin space ωt space minus fraction numerator 1 over denominator square root of 2 end fraction space cos space ωt close square brackets

equals space square root of 2 space open square brackets sin space ωt space straight x space cos space straight pi over 4 space minus space cos space ωt space straight x space sin straight pi over 4 space close square brackets
equals square root of 2 space space sin space open parentheses ωt space space minus space straight pi over 4 space close parentheses space

 
This function represents SHM as it can be written in the form of a sin (ωt + Φ).
Its period is: 2π/ω

(b) Periodic but not SHM 
The given function is, 
sin3 ω= 1/4 [3 sin ωt - sin3ωt
The terms sin ωand sin ωt individually represent simple harmonic motion (SHM).
However, the superposition of two SHM is periodic and not simple harmonic. 
It has a period of 2π/ω

(c) SHM 
The given function is: 
3 space cos space open square brackets straight pi over 4 space minus space 2 ωt close square brackets space
space equals space 3 space cos space open square brackets space 2 ωt space minus straight pi over 4 close square brackets
This function represents simple harmonic motion because it can be written as, 
                           a cos (ωt + Φ)
Its period is: 2π/2ω = π/ω

(d) Periodic, but not simple harmonic motion. 
The given function  is cosωt + cos3ωt + cos5ωt.
Each individual cosine function represents SHM.
However, the superposition of three simple harmonic motions is periodic, but not simple harmonic.
(e) Non-periodic motion 
The given function exp(-ω2t2) is an exponential function.
Exponential functions do not repeat themselves. Therefore, it is a non-periodic motion.
(f) The given function 1 + ωt + ω2t2 is non-periodic.