-->

Mechanical Properties Of Fluids

Question
CBSEENPH11020187

Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and temperature 17 °C. Take the radius of a nitrogen molecule to be roughly 1.0 Å. Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of N2 = 28.0 u).

Solution

Mean free path = 1.11 × 10–7 m
Collision frequency = 4.58 × 109 s–1 

Successive collision time ≈ 500 × (Collision time) 
Pressure inside the cylinder containing nitrogen,

 P = 2.0 atm
    = 2.026 × 105 Pa 
Temperature inside the cylinder, T = 17°C =290 K 
Radius of a nitrogen molecule, r = 1.0 Å
                                                = 1 × 1010 m 
Diameter, d = 2 × 1 × 1010 = 2 × 1010 m 
Molecular mass of nitrogen, M = 28.0 g
                                             = 28 × 10–3 kg 
The root mean square speed of nitrogen is given by the relation,
straight v subscript rms space equals space square root of fraction numerator 3 RT over denominator straight M end fraction end root

where comma

straight R space is space the space universal space gas space constant space equals space 8.314 space straight J space mol to the power of negative 1 end exponent space straight K to the power of negative 1 end exponent

Therefore comma space

straight v subscript rms space equals space fraction numerator 3 straight x 8.314 space straight x 290 over denominator 28 space straight x space 10 to the power of negative 3 end exponent end fraction space equals space 508.26 space straight m divided by straight s

l italic space equals space fraction numerator KT over denominator square root of 2 straight x space straight d squared xP end fraction space

where comma space

straight k space is space the space boltzman space constant

straight k space equals space 1.38 space straight x space 10 to the power of negative 23 end exponent space kg space straight m squared space straight s to the power of negative 2 end exponent space straight K to the power of negative 1 end exponent

Therefore comma space

l italic space italic equals italic space fraction numerator space 1.38 space straight x space 10 to the power of negative 23 end exponent space straight x space 290 over denominator square root of 2 space straight x space 3.14 space straight x space left parenthesis 2 space straight x 10 to the power of negative 10 end exponent right parenthesis squared space straight x space 2.026 space straight x space 10 to the power of 5 end fraction

italic space italic space italic equals italic space 1.11 space straight x space 10 to the power of negative 7 end exponent space
Collision frequency = straight v subscript rms over l 
                             = 508.26 / (1.11 × 10-7
                             =  4.58 × 109 s-1 

Collision time is given as, 
T = straight d over straight v subscript rms

  = fraction numerator 2 space cross times space 10 to the power of negative 10 end exponent over denominator 508.26 end fraction 
  =  3.93 × 10-13 s
Time taken between successive collisions, 
T ' = l / vrms 
    = 1.11 × 10-7 / 508.26 
    =  2.18 × 10-10 s
Therefore, 
fraction numerator straight T apostrophe over denominator straight T end fraction space equals space fraction numerator 2.18 space cross times space 10 to the power of negative 10 end exponent over denominator 3.93 space cross times space 10 to the power of negative 13 end exponent end fraction space equals space 500 
Hence, the time taken between successive collisions is 500 times the time taken for a collision.