-->

Motion In Straight Line

Question
CBSEENPH11020155

Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?

Solution
Time taken by the Earth to complete one revolution around the Sun, 
                   Te = 1 year 
Orbital radius of the Earth in its orbit, R= 1 AU 
Time taken by the planet to complete one revolution around the Sun, TP = ½Te 
                                              = ½ year 
Orbital radius of the planet = Rp
 

From Kepler’s third law of planetary motion,
 open parentheses straight R subscript straight P over straight R subscript straight e close parentheses cubed space equals space open parentheses T subscript P over T subscript e close parentheses squared space

open parentheses straight R subscript straight P over straight R subscript straight e close parentheses space equals space space open parentheses T subscript P over T subscript e close parentheses to the power of begin inline style bevelled 2 over 3 end style end exponent space

space space space space space space space space space space space space space equals space open parentheses fraction numerator bevelled 1 half over denominator 1 end fraction close parentheses to the power of begin inline style bevelled 2 over 3 end style end exponent space

space space space space space space space space space space space space space equals open parentheses space 0.5 close parentheses to the power of begin inline style bevelled 2 over 3 end style end exponent space

space space space space space space space space space space space space space equals 0.63 space 
Hence, the orbital radius of the planet will be 0.63 times smaller than that of the Earth.