-->

Units And Measurement

Question
CBSEENPH11020145

Prove the result that the velocity of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined plane of a height is given by v2 = 2gh/ [1 + (k2/R2) ].

Using dynamical consideration (i.e. by consideration of forces and torques). Note is the radius of gyration of the body about its symmetry axis, and R is the radius of the body. The body starts from rest at the top of the plane. 

Solution
A body rolling on an inclined plane of height h,is shown in figure below:


Let,
m
 = Mass of the body 
= Radius of the body 
K = Radius of gyration of the body 
= Translational velocity of the body 
=Height of the inclined plane 
g = Acceleration due to gravity 
Total energy at the top of the plane, E­1= mg

Total energy at the bottom of the plane, Eb = KErot + KEtrans 

                                                        = open parentheses 1 half close parentheses I ω2 +open parentheses 1 half close parentheses mv2
But I = mk2 and ω = v / 

∴ Eb = open parentheses 1 half close parentheses (mk2)open parentheses straight v squared over straight R squared close parentheses + open parentheses 1 half close parenthesesmv2
      = open parentheses 1 half close parenthesesmv2 (1 +straight k squared over straight R squared)
From the law of conservation of energy, we have
                 ET = E

              mgh = open parentheses 1 half close parenthesesmv2 (1 +straight k squared over straight R squared)
∴                v = open parentheses fraction numerator 2 gh over denominator 1 space plus space begin display style straight k squared over straight R squared end style end fraction close parentheses 
Hence, the result.