-->

Units And Measurement

Question
CBSEENPH11020143

(a) Prove the theorem of perpendicular axes. 

(Hint: Square of the distance of a point (x, y) in the x–y plane from an axis through the origin perpendicular to the plane is (x+ y2). 

Solution
The theorem of perpendicular axes states that the moment of inertia of a planar body (lamina) about an axis perpendicular to its plane is equal to the sum of its moments of inertia about two perpendicular axes concurrent with the perpendicular axis and lying in the plane of the body. 
A physical body with centre O and a point mass m,in the xyplane at (xy) is shown in the following figure below. 

                         
Moment of inertia about x-axis, Ix = mx
Moment of inertia about y-axis, Iy = my

Moment of inertia about z-axis, Iz = m(x2 + y2)1/2 

Therefore, 
Ix + Iy = mx2 + my

         = m(x2 + y2
         = straight m space open square brackets square root of straight x squared plus straight y squared end root close square brackets to the power of begin inline style bevelled 1 half end style end exponent 
I
x + Iy = I

Hence, the theorem is proved.