Question
A plane is in level flight at constant speed and each of its two wings has an area of 25 m2. If the speed of the air is 180 km/h over the lower wing and 234 km/h over the upper wing surface, determine the plane’s mass. (Take air density to be 1 kg m–3).
Solution
Given,
Area of the wings of the plane, A = 2 × 25 = 50 m2
Speed of air over the lower wing, V1 = 180 km/h = 50 m/s
Speed of air over the upper wing, V2 = 234 km/h = 65 m/s
Density of air, ρ = 1 kg m–3
Pressure of air over the lower wing = P1
Pressure of air over the upper wing= P2
The upward force on the plane can be obtained using Bernoulli’s equation,
Area of the wings of the plane, A = 2 × 25 = 50 m2
Speed of air over the lower wing, V1 = 180 km/h = 50 m/s
Speed of air over the upper wing, V2 = 234 km/h = 65 m/s
Density of air, ρ = 1 kg m–3
Pressure of air over the lower wing = P1
Pressure of air over the upper wing= P2
The upward force on the plane can be obtained using Bernoulli’s equation,
