-->

Laws Of Motion

Question
CBSEENPH11020092

A thin circular loop of radius rotates about its vertical diameter with an angular frequency ωShow that a small bead on the wire loop remains at its lowermost point for straight omega space less-than or slanted equal to space square root of straight g over straight R end rootWhat is the angle made by the radius vector joining the centre to the bead with the vertical downward direction for ω square root of fraction numerator 2 straight g over denominator straight R end fraction end root? Neglect friction.

Solution
Let the radius vector joining the bead with the centre make an angle θ, with the vertical downward direction.

             
Here,
OP = R = Radius of the circle
  N = Normal reaction
The respective vertical and horizontal equations of forces can be written as, 
mg = N Cosθ                         ... (i) 

mlω2 = Sinθ                       … (ii)
In ΔOPQ, we have
Sin θ = l / R 
R Sinθ                              … (iii)

Substituting equation (iii) in equation (ii), we get
 
m(R Sinθω2 = N Sinθ 

mR ω2 = N                            ... (iv) 

Substituting equation (iv) in equation (i), we get
mg = mR ω2 Cosθ 

Cosθ = g / Rω2                        ...(v) 

Since cosθ ≤ 1, the bead will remain at its lowermost point for g / Rω2 ≤ 1.
i.e., for                      ω ≤ (g / R)1/2  
For ω = (2g / R)1/2 
rightwards double arrow      ω2 = 2g / R                  ...(vi) 
On equating equations (v) and (vi), we get
  fraction numerator 2 straight g over denominator straight R end fraction = g / RCos θ  
 Cos θ = 1 / 2 
∴ θ = Cos-1(0.5)  =  600 , is the angle made by the radius vector joining the centre to the bead with the vertical downward direction.