-->

Laws Of Motion

Question
CBSEENPH11020078

A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius 1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in the string? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N?

Solution
We have, 
Mass of the stone, m = 0.25 kg
Radius of the circle, r = 1.5 m
Number of revolution per second, n =
40 over 60 equals space 2 over 3 space r. p. s 40 / 60 = 2 / 3 rps
Angular velocity, ω = straight v over straight r = 2πn 
The tension in the string provides the centripetal force. 
i.e.,
T = Fcentripetal 

   = mv squared over straight r 
    = mrω
    = mr(2πn)

    = 0.25 × 1.5 × (2 × 3.14 × (open parentheses 2 over 3 close parentheses)2
    = 6.57 N 
Maximum tension in the string,

         Tmax = 200 N 
           max = mv2max / r

∴       vmax = (Tmax × r  / m)1/2 

                 = (200 × 1.5 / 0.25)1/2 

                 = (1200)1/2 
                 = 34.64 m/s 
Therefore, the maximum speed of the stone is 34.64 m/s.