-->

Laws Of Motion

Question
CBSEENPH11020068

A body of mass 0.40 kg moving initially with a constant speed of 10 m s–1 to the north is subject to a constant force of 8.0 N directed towards the south for 30 s. Take the instant the force is applied to be = 0, the position of the body at that time to be = 0, and predict its position at t = –5 s, 25 s, 100 s.
 

Solution
Given,
Mass of the body, m = 0.40 kg
Initial speed of the body, u = 10 m/s, due north
Force acting on the body, F = –8.0 N
Acceleration produced in the body, a = straight F over straight m space equals space fraction numerator negative 8 over denominator 0.40 end fraction space equals space minus 20 space m divided by s squared
(i)
At t = –5 s,
Acceleration, a' = 0
Initial velocity, u = 10 m/s 
Using the relation, 
         s = ut + (1/2) a' t

           = 10 × (–5) = –50 m
(ii)
At t = 25 s
Acceleration, a'' = –20 m/s2 
Initial velocity, u = 10 m/s
USing the relation, 
            s' = ut' + (1/2) a" t2

               = 10 × 25 + (1/2) × (-20) × (25)

               = 250 - 6250
               = -6000 m
(iii)
At t = 100 s, 
For 0 ≤ t ≤ 30 s 
Acceleration, a = -20 ms-2
Initial velocity, u = 10 m/s
Now, using the equation of motion, we have
               s1 = ut + (1/2)a"t

                   = 10 × 30 + (1/2) × (-20) × (30)2

                   = 300 - 9000 
                   =  -8700 m
For 30 < t ≤ 100 s,
For t= 30 sec, as per the first equation of motion final velocity is given as, 

                   v
 = u + at 

                     = 10 + (–20) × 30
                     = –590 m/s 
Velocity of the body after 30 s = –590 m/s 
For motion between 30 s to 100 s, i.e., in 70 s: 
s2 = vt + open parentheses 1 half close parentheses a" t

    = -590 × 70
    = -41300 m 
∴ Total distance, s" = s1 + s2 
                          = -8700 -41300
                          = -50000 m
                          = -50 km.