-->

Mechanical Properties Of Fluids

Question
CBSEENPH11019980

What is the density of water at a depth where pressure is 80.0 atm, given that its density at the surface is 1.03 × 103kg m–3?

Solution
Let the given depth be h.
Pressure at the given depth, p = 80.0 atm = 80 × 1.01 × 105Pa
Density of water at the surface, ρ= 1.03 × 103 kg m–3

Let ρ2 be the density of water at the depth h.
Let V1 be the volume of water of mass m at the surface.
Let V2 be the volume of water of mass m at the depth h.
Let ΔV be the change in volume.
                   ΔV = V1 - V2
straight m open square brackets open parentheses 1 over straight rho subscript 1 close parentheses minus open parentheses 1 over straight rho subscript 2 close parentheses close square brackets

Therefore comma space Volumetric space strain space equals space ΔV over straight V subscript 1 space
space space space space space space space space space space space equals straight m open square brackets open parentheses 1 over straight rho subscript 1 close parentheses minus open parentheses 1 over straight rho subscript 2 close parentheses close square brackets cross times open parentheses straight rho subscript 1 over straight m close parentheses space

rightwards double arrow space ΔV over straight V subscript 1 space equals space 1 space minus space open parentheses straight rho subscript 1 over straight rho subscript 2 close parentheses space space space space space space space space space space space space space space space space space... space left parenthesis 1 right parenthesis space

Bulk space modulus comma space straight B space equals space fraction numerator ρV subscript 1 over denominator increment straight V end fraction
fraction numerator ΔV space over denominator space straight V subscript 1 end fraction space equals space straight p over straight B

Compressibilty space of space water space equals open parentheses 1 over straight B close parentheses space equals space 45.8 cross times 10 to the power of negative 11 end exponent space Pa to the power of negative 1 end exponent
Therefore comma space

fraction numerator ΔV space over denominator space straight V subscript 1 end fraction equals space 80 space cross times space 1.013 space cross times space 10 to the power of 5 space cross times space 45.8 space cross times space 10 to the power of negative 11 space end exponent

space space space space space space space space space equals space 3.71 space cross times space 10 to the power of negative 3 end exponent space space space space space space space space space space space space space space space space space... space left parenthesis ii right parenthesis

From space equations space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis comma space we space get

space 1 space minus space open parentheses straight rho subscript 1 over straight rho subscript 2 close parentheses space equals space 3.71 space cross times space 10 to the power of negative 3 end exponent
rightwards double arrow space straight rho subscript 2 space equals space fraction numerator 1.03 space cross times space 10 cubed over denominator space 1 space minus space left parenthesis 3.71 space cross times space 10 to the power of negative 3 end exponent right parenthesis end fraction

space space space space space space space space space equals space 1.034 space cross times space 10 cubed space kg space straight m to the power of negative 3 end exponent space

Therefore comma space the space density space of space water space at space the space given space depth space left parenthesis straight h right parenthesis space
is space 1.034 space cross times space 10 to the power of 3 space end exponent kg space straight m to the power of – 3 end exponent.