-->

Mechanical Properties Of Fluids

Question
CBSEENPH11019816

The air above the water surface in a pond is at temperature –θ°C as a result of which the water in the pond starts freezing. Find the time taken by the pond to freeze from thickness x1 to x2. Assume the required data.

Solution
Let us consider a pond of water of surface area A.
Let L be the latent heat, K be the thermal conductivity and ρ be the density of ice.
             
Let at any instant, a layer of thickness x has been already formed. 
Let it take 'dt' time to further increase the thickness of ice by 'dx'.
Heat given up from water to freeze 'dx' layer of ice is, 
dH equals Adxρ space straight L space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
This amount of heat is conducted from water to air through ice layer of thickness dx in time dt.
Thus heat conducted through ice is,
dQ equals KA fraction numerator 0 minus left parenthesis negative straight theta right parenthesis over denominator straight x end fraction dt equals Ka straight theta over straight x dt space space space space space space space space space space space space space space space.... left parenthesis 2 right parenthesis
Equating (1) and (2)
    space space space space space space space space space KA straight theta over straight x dt equals Adx space straight rho space straight L
rightwards double arrow space space space space space space space space space space space space space space space dt equals ρL over Kθ xdx space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis 
Time taken to freeze the ice from thickness x1 to x2 can be obtained by integrating the equation (3).
 i.e., 
integral subscript 0 superscript straight t dt space equals space integral subscript straight x subscript 1 end subscript superscript straight x subscript 2 end superscript ρL over Kθ space straight x space dx space

space space space space right enclose straight t space subscript 0 superscript straight t space equals space ρL over Kθ 1 half straight x squared vertical line subscript straight x subscript 1 end subscript superscript straight x subscript 2 end superscript space

rightwards double arrow space space straight t space equals space fraction numerator ρL over denominator 2 Kθ end fraction left parenthesis straight x subscript 2 squared space minus space straight x subscript 1 squared right parenthesis space