Sponsor Area

Mechanical Properties Of Fluids

Question
CBSEENPH11019521

Show that Cp – Cv = R.

Solution

Consider one mole of an ideal gas enclosed in a cylinder fitted with the movable frictionless piston.

Let the gas be heated at constant volume.
On supplying dQ amount of heat, let the temperature of the gas increase by dT. 

therefore space dQ space equals space straight m space cross times straight C subscript straight P space cross times space dT space

space space space space space space space space space space equals space 1 cross times space straight C subscript straight P space cross times space dT space

According space to space the space first space law space of space thermodynamics comma space

dQ space equals space dU space plus space dW space

space space space space space equals space dU space plus space straight P. dV space left square bracket space dV space equals space 0 right square bracket space

space space space space space equals space dU space
therefore space space space space space space space dQ apostrophe equals 1 cross times straight C subscript straight p cross times dT 
By first law of thermodynamics, 
           dQ = dU + dW = dU + PdV 
rightwards double arrow    CpdT = Cx dT + RdT 
At a constant pressure, 
P.dV = R.dT 


therefore space space space space space space space straight C subscript straight p equals straight C subscript straight v space plus space straight R space

rightwards double arrow space space space space space space space straight C subscript straight p minus straight C subscript straight v equals straight R
 
where  CpCand R are in same units. 
Hence, proved.