-->

Mechanical Properties Of Fluids

Question
CBSEENPH11019336

The amplitude of simple harmonic oscillation is doubled. How would this affect: 

(i) Time period,

(ii) Maximum velocity,

(iii) Acceleration at mean position, 

iv) Kinetic energy at mean position?

Solution
(i) Time period of oscillation of simple harmonic oscillator is given by,
                  <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre> 

Time period is independent of the amplitude of vibration. Therefore, time period remains unchanged on doubling the amplitude of oscillation. 

(ii) For a particle undergoing Simple Harmonic Motion, maximum velocity is given by

                            v = A ω

where, A is amplitude.
When amplitude is doubled, the maximum velocity becomes twice. 

(iii) Acceleration at mean position is zero and is independent of the amplitude of vibration.
Therefore, acceleration at mean position remains unaffected.

(iv) Kinetic energy at mean position is, 
                       straight K equals 1 half mω squared space straight A squared
If the amplitude of oscillation gets doubled, then kinetic energy at mean position increases to four times.