Sponsor Area

Mechanical Properties Of Fluids

Question
CBSEENPH11019392

A disc has mass M and radius R. If temperature coefficient of linear expansion of material of disc is a, then find the increase in the moment of inertia of disc when heated through θ°C.

Solution
The moment of inertia of disc at low temperature is, 
                        straight I subscript straight o space equals space 1 half MR squared 
When the disc is heated its mass remains same but radius will increase.
Let R' be the radius of disc at temperature θ. 
That is, 
                      straight R apostrophe space equals space straight R left parenthesis 1 plus αθ right parenthesis 
Therefore the moment of inertia of disc at high temperature is, 
   straight I space equals 1 half MR apostrophe squared space
space space equals space 1 half straight M left square bracket straight R left parenthesis 1 plus αθ right parenthesis right square bracket squared space 
    equals straight I subscript straight o left parenthesis 1 plus αθ right parenthesis squared space space

equals space straight I subscript straight o left parenthesis 1 plus 2 αθ right parenthesis 
Increase in moment of inertia of disc is, 
          straight I minus straight I subscript straight o space equals space 2 straight I subscript straight o αθ