Sponsor Area

Mechanical Properties Of Fluids

Question
CBSEENPH11019224

Two particles vibrating simple harmonically with amplitude A and frequency co along the same straight line. They pass one another when going in opposite direction. Each time when they cross are at a distance 0.707A. What is the phase difference between them?

Solution

Let the equation of motion of two particles be, 

straight y equals straight A space space sin space ωt space and space space space straight y space equals space straight A space sin open parentheses ωt plus straight ϕ close parentheses
where,
ϕ is the phase difference between two particles.
Each time the particles cross at a distance 0.707A.
Therefore, 
          0.707A=A sinomega t 

and    0.707A=A sin(wt+straight ϕ


rightwards double arrow       0.707=sinomega t and, 
          0.707= snspace space space open parentheses ωt plus straight ϕ close parentheses 
Now,

     sin(left parenthesis ωt plus straight ϕ right parenthesis=sin(left parenthesis wt plus straight ϕ right parenthesis=sin 
      left parenthesis wt right parenthesis cos left parenthesis straight ϕ right parenthesis plus cos left parenthesis wt right parenthesis sin left parenthesis straight ϕ right parenthesis
Since,  
s i n space omega t equals 0.707

space rightwards double arrow space c o s space omega t space equals 0.707 space

therefore space 0.707 equals 0.707 space c o s left parenthesis straight ϕ right parenthesis plus 0.707 space space s i n left parenthesis straight ϕ right parenthesis space

rightwards double arrow space space space space c o s left parenthesis straight ϕ right parenthesis plus s i n left parenthesis straight ϕ right parenthesis equals 1 space

rightwards double arrow space space space space c o s open parentheses straight ϕ close parentheses equals 1 minus s i n left parenthesis straight ϕ right parenthesis space

rightwards double arrow space space space space c o s squared left parenthesis straight ϕ right parenthesis equals 1 plus s i n squared left parenthesis straight ϕ right parenthesis minus 2 s i n left parenthesis straight ϕ right parenthesis space

rightwards double arrow space space space 1 minus s i n squared left parenthesis straight ϕ right parenthesis equals 1 plus s i n squared left parenthesis straight ϕ right parenthesis minus 2 s i n left parenthesis straight ϕ right parenthesis space

rightwards double arrow space space space space space space 2 space s i n squared left parenthesis straight ϕ right parenthesis equals 2 space s i n left parenthesis straight ϕ right parenthesis space

rightwards double arrow space space space space s i n left parenthesis straight ϕ right parenthesis space equals space 1 space o r space 0 space

rightwards double arrow space space space space space space straight ϕ space equals space 0 to the power of degree space space o r space 90 degree 
We can see that ϕ = 0 is not possible.
Therefore the phase difference between two particles is 90°.