-->

Mechanical Properties Of Fluids

Question
CBSEENPH11019129

The displacement of a particle executing simple harmonic motion is represented by = r sin ωt. Find the velocity and acceleration of the particle in terms of displacement.

Solution

Displacement of particle executing S.H.M is given by,
 y=  space space r space sinωt
Velocity of the particle is, 

straight v equals dy over dt equals straight d over dt left parenthesis straight r space sin space ωt right parenthesis space equals space rω space cos space ωt
This implies, 
straight v space equals space straight omega space square root of straight r squared cos squared ωt end root space

space space equals space straight omega space square root of straight r squared left parenthesis 1 minus sin squared ωt right parenthesis end root

space space equals space straight omega space square root of straight r squared minus straight r squared sin squared ωt end root space

straight v space equals space straight omega square root of straight r squared minus straight y squared end root space

And comma space

Acceleration comma space straight a space space equals space dv over dt space equals space straight d over dt open parentheses rω space cos space ωt close parentheses space

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space minus space rω squared space sin space ωt space equals space minus straight omega squared straight y space

That space is comma space

straight a space equals space minus straight omega squared straight y