-->

Mechanical Properties Of Fluids

Question
CBSEENPH11018921

State and prove Bernoulli's theorem.

Solution

Statement: For the streamline flow of non-viscous and incompressible liquid, the sum of potential energy, kinetic energy and pressure energy is constant. 
straight P over straight rho space plus space gh space plus space 1 half straight v squared space equals space constant space




Proof:
Let us consider the ideal liquid of density ρ flowing through the pipe LM of varying cross-section.
Let P1 and P2 be the pressures at ends L and M and A1 and A2 be the areas of cross-sections at ends L and M respectively.
Let the liquid enter with velocity V1 and leave with velocity v2.
Let A1 > A2.
Now, by equation of continuity,
                     straight A subscript 1 straight v subscript 1 space equals space straight A subscript 2 straight v subscript 2 
Since, A1 > A2
Therefore, 
v2 > v1 and P> P2 
Let, m be the mass of liquid enetring at end L in time t. 
The liquid will cover a distance = v1
Therefore, the work done by pressure on the liquid at end L in time t is, 
W1 = Force cross times space displacement 
      = P1A1v1t           ... (1) 
Since same mass m leaves the pipe at end M in same time t, in which liquid will cover the distance given by v2t.
Therefore, work done by liquid against the force due to pressure P1 is given by, 
 
        W2 = P2A2v2t        ... (2) 
Net ork done by pressure on the liquid in time t is, 
W = W1 - W2 
    =P1A1v1t  - P2A2v2t        ... (3) 
This work done on liquid by pressure increases it's kinetic energy and potential energy. 
Increase in K.E of liquid is, 
increment straight K space equals space 1 half straight m space left parenthesis straight v subscript 2 squared space minus space straight v subscript 1 squared right parenthesis space space space space space space space... space left parenthesis 4 right parenthesis thin space

Increase space in space potential space energy space of space liquid space is comma space

increment straight P space equals space mg thin space left parenthesis straight h subscript 2 space minus straight h subscript 1 right parenthesis space space space space space space space space space space space space space space space... space left parenthesis 5 right parenthesis thin space

According space to space work minus energy space relation comma space

straight P subscript 1 straight A subscript 1 straight v subscript 1 straight t space minus space straight P subscript 2 straight A subscript 2 straight v subscript 2 space straight t space

equals space 1 half straight m space left parenthesis straight v subscript 2 squared space minus space straight v subscript 1 squared right parenthesis space space plus space mg thin space left parenthesis straight h subscript 2 space minus straight h subscript 1 right parenthesis space space space... space left parenthesis 6 right parenthesis

If space there space is space no space source space and space sink space of space liquid comma space
then space mass space of space liquid space entering space at space end space straight L
is space equal space to space the space mass space of space liquid space leaving space the space pipe
at space end space straight M space and space is space given space by comma space

straight A subscript 1 straight v subscript 1 ρt space equals space straight A subscript 2 straight v subscript 2 ρt space equals space straight m

rightwards double arrow space straight A subscript 1 straight v subscript 1 straight t space equals space straight A subscript 2 straight v subscript 2 straight t space equals space straight m over straight rho space space space space space space space space space space space space space... space left parenthesis 7 right parenthesis space

From space equation space left parenthesis 6 right parenthesis space and space left parenthesis 7 right parenthesis comma space we space have

straight P subscript 1 space straight m over straight rho minus straight P subscript 2 straight m over straight rho space

equals space 1 half straight m space left parenthesis straight v subscript 2 squared space minus space straight v subscript 1 squared right parenthesis space plus space mg thin space left parenthesis straight h subscript 2 space minus straight h subscript 1 right parenthesis space space
That is, 
straight P over straight rho space plus space gh space plus space 1 half straight v squared space equals space constant space