-->

Motion In A Plane

Question
CBSEENPH11018498

Point mass slides from rest from the topmost point of vertical circle of radius r along the smooth chord. Show that the time of descend of mass along the chord is independent of chord chosen.

Solution

Given, 
Radius of the circle = r 
             
Consider, an arbitrary chord AB which subtends an angle straight theta with vertical.
Now, the length of chord AB is given by, 

AB equals square root of straight r squared plus straight r squared minus 2 rrcos left parenthesis 180 degree minus 2 straight theta right parenthesis end root

   equals square root of 2 straight r squared left parenthesis 1 plus cos space 2 straight theta right parenthesis end root

equals space 2 straight r space cosθ                   
Acceleration of mass along inclined plane is, straight a equals gcosθ

Now, using the equation of motions,
                     straight S equals ut plus 1 half at squared 
∴         2 straight r space cosθ space equals space 0 cross times straight t plus 1 half straight g space cosθt squared 
rightwards double arrow      straight t equals square root of fraction numerator 4 straight r over denominator straight g end fraction end root equals 2 square root of straight r over straight g end root
Since t is independent of straight theta, hence time of descend of mass is independent of the choice of chord.