-->

Mechanical Properties Of Fluids

Question
CBSEENPH11018298

n identical drops (each of radius r) of liquid of surface tension T and density ρ coalesce to form single drop. The energy released in the process is converted into kinetic energy. Find the speed of drop.

Solution

Let R be the radius of big drop.

When the drops coalesces, the volume of liquid remains constant.
There are n identical drops of radius 'r'. 
Therefore, 
Decrease space in space surface space area space equals space straight A subscript 1 space minus space straight A subscript 2 space

increment straight A space equals space 4 straight pi space left parenthesis nr squared space minus space straight R squared right parenthesis space

space space space space space space space equals space 4 straight pi space left parenthesis thin space straight n space minus space straight n to the power of begin inline style bevelled 2 over 3 end style end exponent right parenthesis space

Energy space which space is space released space during space coalesce space is comma space

straight E space equals space increment straight A space cross times space straight T space equals space 4 straight pi space Tr squared space left parenthesis space straight n minus straight n to the power of begin inline style bevelled 2 over 3 end style end exponent right parenthesis space

The space enrgy space released space is space converted space into space Kinetic space energy. space

Therefore comma space

1 half mv squared space equals space 4 straight pi space Tr squared space left parenthesis space straight n minus straight n to the power of begin inline style bevelled 2 over 3 end style end exponent right parenthesis space

rightwards double arrow space 1 half straight rho space 4 over 3 straight pi space straight R cubed straight v squared space equals space space 4 straight pi space Tr squared space left parenthesis space straight n minus straight n to the power of begin inline style bevelled 2 over 3 end style end exponent right parenthesis space

rightwards double arrow space 1 half straight rho space 4 over 3 πnr cubed straight v squared space equals space space 4 straight pi space Tr squared space left parenthesis space straight n minus straight n to the power of begin inline style bevelled 2 over 3 end style end exponent right parenthesis space

rightwards double arrow space 1 over 6 space ρnrv squared space equals space straight T space left parenthesis straight n space minus space straight n to the power of begin inline style bevelled 2 over 3 end style end exponent right parenthesis

rightwards double arrow space straight v space equals space square root of fraction numerator 6 straight T space left parenthesis straight n space minus space straight n to the power of bevelled 2 over 3 end exponent right parenthesis over denominator ρnr end fraction end root