-->

Motion In A Plane

Question
CBSEENPH11018240

Define direction cosines of a vector and show that sum of the square of the direction cosines is equal to unity.

Solution

The cosine of angles made by a vector with the positive directions of X, Y and Z axis is called the direction cosines of a vector. 
Let us define a vector straight A with rightwards harpoon with barb upwards on top space equals space A subscript x i with hat on top plus A subscript y j with hat on top plus A subscript z k with hat on top, making angle straight theta subscript straight x comma space straight theta subscript straight y space and space straight theta subscript straight z respectively with the positive directions of X, Y and Z axis. 
The direction cosines of vector are, 
cos space theta subscript x space equals space A subscript x over A semicolon space cos space theta subscript y space equals space A subscript y over A space semicolon space cos theta subscript z space equals space A subscript z over A space
 
Now, square of magnitude of vector are, 
straight A squared space equals space straight A subscript straight x squared space plus space straight A subscript straight y squared space plus space straight A subscript straight z squared space

space space space space space equals space left parenthesis Acosθ subscript straight x right parenthesis squared space plus space left parenthesis Acosθ subscript straight y right parenthesis squared space plus space left parenthesis Acosθ subscript straight z right parenthesis squared space

space space space space space equals space straight A squared left parenthesis cos squared straight theta subscript straight x space plus space cos squared straight theta subscript straight y space plus space cos squared straight theta subscript straight z right parenthesis space

rightwards double arrow space cos squared space straight theta subscript straight x space plus space cos squared straight theta subscript straight y space plus space cos squared straight theta subscript straight z space equals space 1 space


space space space space space space space