-->

Laws Of Motion

Question
CBSEENPH11016805

The force required to just move the body up the inclined plane is twice the force required to just prevent it from sliding down the inclined plane. Find the coefficient of friction.

Solution
The force of friction acts along the slope down the inclined plane, when the body moves up the inclined plane.

Let Fl be the force required to move the body up the inclined plane. 
straight F subscript 1 equals mg space sinθ space plus space straight mu space mg space cosθ 
Now, let F2 be the force required to just prevent the body sliding down.
When the body is just at the point of sliding down, the force of friction acts up the inclined plane.

Thus
               space space space space space straight F subscript 2 equals mg space sinθ minus straight mu space mg space cosθ
Since,
                       space space space straight F subscript 1 equals 2 straight F subscript 2    [ Given] 
Therefore,
     mg space sinθ space plus space straight mu space mg space cosθ space equals space 2 left parenthesis mgsinθ minus straight mu space mg space cosθ right parenthesis 
rightwards double arrow              3 straight mu space mg space cosθ space equals space mg space sinθ
rightwards double arrow                           3 straight mu equals tanθ
rightwards double arrow                         space space space space space straight theta equals tan to the power of negative 1 end exponent left parenthesis 3 straight mu right parenthesis
So, coefficient of friction is given by,
                    straight mu space equals space 1 third space tan space straight theta