-->

Units And Measurement

Question
CBSEENPH11016609

Derive the expression for viscous force acting on spherical body of radius r moving with velocity v through viscous liquid of coefficient of viscosity η.

Solution

Viscous force acting on spherical body of radius r moving with velocity v through viscous liquid of coefficient of viscosity straight eta
Let        F italic space alpha italic space r to the power of a 
           
              straight alpha space straight nu to the power of straight b
          
           <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
rightwards double arrow       straight F space straight alpha space straight r to the power of straight a straight v to the power of straight b straight eta to the power of straight c
rightwards double arrow   space space space space space straight F space equals space straight k space straight r to the power of straight a straight v to the power of straight b straight eta to the power of straight c space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis

where k is constant of proportionality.

Substituting the dimension formula of each quantity in equation (1),
open square brackets straight M to the power of 1 straight L to the power of 1 straight T to the power of negative 2 end exponent close square brackets equals open square brackets straight M to the power of 0 straight L to the power of 1 straight T to the power of 0 close square brackets to the power of straight a open square brackets straight M to the power of 0 straight L to the power of 1 straight T to the power of negative 1 end exponent close square brackets to the power of straight b open square brackets straight M to the power of 1 straight L to the power of negative 1 end exponent straight T to the power of negative 1 end exponent close square brackets to the power of straight c
rightwards double arrow open square brackets straight M to the power of 1 straight L to the power of 1 straight T to the power of negative 2 end exponent close square brackets equals open square brackets straight M to the power of 0 straight L to the power of straight a plus straight b minus straight c end exponent straight T to the power of negative straight b minus straight c end exponent close square brackets
Equating the powers of M, L and T on both the sides, we get
                       c = 1
                   a + b - c = 1
                    - b - b = - 2
On solving  we get, 
                    a = 1,    b = 1,    c = 1
Subsituting for a , b and c in (1), we get
                          straight F space equals space straight k space straight r space straight nu space straight eta, is the viscous force.