-->

Motion In Straight Line

Question
CBSEENPH11017696

 A non-homogeneous sphere of radius R has the following density relation: 

straight rho space equals space straight rho subscript straight o space space space space space space space space space space space space semicolon space 0 space less than space straight r space less or equal than space straight R divided by 2

space space space space equals space 2 straight rho subscript straight o space space space space space space space space space semicolon space straight R over 2 space less than thin space straight r space less or equal than space fraction numerator 3 straight R over denominator 2 end fraction space

space space space space equals space 0 space space space space space space space space space space space space space semicolon space space straight r space greater than thin space fraction numerator 3 straight R over denominator 2 end fraction space

What is the total mass of sphere and gravitational field at the surface of sphere?



 

Solution
                
According to the figure given above, we have
Mass of inner sphere of radius R/2 is, 
      straight m subscript 1 space equals 4 over 3 straight pi open parentheses straight R over 2 close parentheses cubed space straight rho subscript straight o

space space space space space space equals fraction numerator pi R cubed straight rho subscript straight o over denominator 6 end fraction
Mass of outer sphere whose outer radius is fraction numerator 3 straight R over denominator 2 end fraction and inner straight R over 2 is,
 straight m subscript 2 equals 4 over 3 straight pi open square brackets open parentheses fraction numerator 3 straight R over denominator 2 end fraction close parentheses cubed minus open parentheses straight R over 2 close parentheses cubed close square brackets 2 straight rho subscript straight o 
      equals 4 over 3 straight pi fraction numerator 26 straight R cubed over denominator 8 end fraction 2 straight rho subscript straight o equals 52 over 6 straight R cubed pi rho subscript straight o 
Total mass of the sphere is,
straight m subscript 1 plus straight m subscript 2 space equals fraction numerator pi R cubed straight rho subscript straight o over denominator 6 end fraction plus 52 over 6 pi R cubed straight rho subscript straight o

space space space space space space space space space space space space space space space equals 53 over 6 pi R cubed straight rho subscript straight o 
Now gravitational field at the surface of sphere is,
space straight E subscript straight g equals fraction numerator G M over denominator straight r squared end fraction
space space space space space space equals straight G 53 over 6 fraction numerator pi R cubed straight rho subscript straight o over denominator open parentheses begin display style 3 over 2 straight R end style close parentheses squared end fraction
space space space space space space equals 106 over 27 pi R rho subscript straight o straight G