-->

Units And Measurement

Question
CBSEENPH11017675

A planet rotates about the sun in an elliptical orbit whose eccentricity is e. What is the ratio of maximum to a minimum velocity of the planet?

Solution
Let a planet rotate about the sun in an elliptical orbit whose semi-major axis is a and eccentricity is e as shown. 

Since, angular momentum of planet is constant
i.e.,               mvr = constant,
therefore v is maximum when planet is at the nearest point.
i.e., at P1 and minimum when it is at the farthest point i.e. at P2.

Distance of P1 from the sun =a - ae
                                           =a( 1- e)

Distance of P2 from the sun =a + ae
                                          =a( 1 + e)

According to the law of conservation of angular momentum, 
mv subscript max space straight a open parentheses 1 minus straight e close parentheses equals m space v subscript min straight a left parenthesis 1 plus straight e right parenthesis space

rightwards double arrow space space space space space space space space space straight v subscript max over straight v subscript min equals fraction numerator 1 plus straight e over denominator 1 minus straight e end fraction