-->

Units And Measurement

Question
CBSEENPH11017673

Derive an expression for torque in terms of moment of inertia of body and its angular acceleration.

Solution

Consider a rigid body rotating about XY-axis under the action of external torque τ.
As a result the body possesses the angular acceleration ‘α’ about the axis of rotation.
All the constituent particles possess the same angular acceleration but the linear acceleration of different particles will be different.
The acceleration of ith particle is,

                   ai = ri α

The magnitude of external force on ith particle will be,

              Fi =mi ai = mi ri α

This force on the ith particle produces the turning effect.
The magnitude of torque on this particle is equal to the product of force and the perpendicular distance from the axis of rotation to the line of action of force.
T h a t space i s comma space

space space space space space space straight tau subscript 1 equals straight r subscript 1 straight f subscript 1

space space space space space space space space space space equals straight r subscript 1 straight m subscript 1 straight r subscript 1 straight alpha space

space space space space space space space space space equals space straight m subscript 1 straight r subscript 1 squared straight alpha equals straight I subscript 1 straight alpha 
Therefore total torque acting on rigid body is, 
therefore space space straight tau equals sum straight t subscript 1

space space space space space space space space equals sum straight I subscript 1 straight alpha space

space space space space space space space space equals straight alpha sum straight I subscript 1 space
space space space space space space space space equals αI

rightwards double arrow space space space space space space straight tau equals straight I space straight alpha