-->

Units And Measurement

Question
CBSEENPH11017512

Find the moment of inertia of ring of mass 'M' and radius R about an axis passing through the centre and perpendicular to its plane.

Solution
Let AB be the axis passing through the centre and perpendicular to the plane of the ring.
Consider an arbitrary line element of length dx at point P on the ring.
The moment of inertia of the line element dx of mass λdx about AB axis is, 
dI = straight lambda space dx space straight R squared 
 
To find the moment of inertia of the ring about AB axis, integrate over the entire ring 
straight I space equals space integral space dI space equals contour integral space straight lambda space dx space straight R squared space

space space space space space space space space space space space space space space space space equals space straight lambda space straight R squared space left parenthesis 2 πR right parenthesis space

space space space space space space space space space space space space space space space space equals space straight lambda space left parenthesis 2 πR right parenthesis thin space straight R squared space

space space space space space space space space space space space space space space space space equals space MR squared space

straight i. straight e. comma space space space space space space straight I space equals space MR squared