-->

Motion In Straight Line

Question
CBSEENPH11017452

A rocket is fired from the earth towards the sun. At what distance from the earth’s
centre is the gravitational force on the rocket zero ? Mass of the sun = 2× 1030 kg,
mass of the earth = 6× 1024 kg. Neglect the effect of other planets etc. (orbital radius
= 1.5 × 1011 m).

Solution

Given,
Mass of the sun, M = 2× 1030 kg
Mass of the earth, m = 6.0 × 1024 kg 
Distance from the sun and the earth is, 
                  straight r equals 1.5 cross times 10 to the power of 11 straight m 
        
Let the force on the rocket be zero at a distance x from the earth. 
∴              space space fraction numerator GMm subscript 0 over denominator left parenthesis straight r minus straight x right parenthesis squared end fraction equals Gmm subscript 0 over straight x squared 
where, straight m subscript 0 is a mass of the rocket. 
Therefore,
    fraction numerator straight M over denominator left parenthesis straight r minus straight x right parenthesis squared end fraction equals straight m over straight x squared 

rightwards double arrow   
rightwards double arrow        straight r over straight x equals 1 plus square root of straight M over straight m end root equals 1 plus square root of fraction numerator 2 cross times 10 to the power of 30 over denominator 60 cross times 10 to the power of 24 end fraction end root 
                 = 578.35 
Therefore,
Gravitational force is zero on the rocket at a distance of, 
space space straight x equals fraction numerator straight r over denominator 587.35 end fraction equals fraction numerator 1.5 cross times 10 to the power of 11 over denominator 587.35 end fraction straight m  
                  space space equals 2.6 cross times 10 to the power of 8 straight m, from the Earth's surface.