-->

Work, Energy And Power

Question
CBSEENPH11017286

Show that in one dimension elastic collision, velocity of separation is equal to the velocity of approach.

Solution
Consider two bodies of masses m1 and m2 moving with velocities u1 and u2 along the same straight line.
Let the two bodies collide and after collision v1 and v2 be the velocities of two masses respectively.
Before collision:
Momentum of mass m1 = m1u1 
Momentum of mass m2 = m2u2
Total momentum before collision, 
p1 = m1 u1 + m2u2 
K.E of mass m11 half m subscript 1 u subscript 1 squared
K.E of mass m21 half m subscript 2 u subscript 2 squared
Therefore, 
Total K.E before collision is, 
K.E = 1 half m subscript 1 u subscript 1 squared + 1 half m subscript 2 u subscript 2 squared
After collision:
Momentum of mass m1 = m1v1
Momentum of mass m= m2v2 
Total momentum after collision is, 
pf = m1v1 +  m2v2 
K.E of mass m11 half m subscript 1 v subscript 1 squared
K.E of mass m21 half m subscript 2 v subscript 2 squared
Total K.E after collision, Kf1 half m subscript 1 v subscript 1 squared1 half m subscript 2 v subscript 2 squared 
Now, according to the law of conservation of momentum, 
space space space space space straight m subscript 1 straight u subscript 1 space plus space straight m subscript 2 straight u subscript 2 space equals space straight m subscript 1 straight v subscript 1 space plus space straight m subscript 2 straight v subscript 2 space

rightwards double arrow space straight m subscript 1 space left parenthesis space straight u subscript 1 space minus space straight v subscript 1 right parenthesis space equals space straight m subscript 2 space left parenthesis space straight v subscript 2 space minus space straight u subscript 2 right parenthesis space space space space space space space space space space space space... space left parenthesis 1 right parenthesis thin space

According space to space the space law space of space conservation space
of space straight K. straight E comma space we space have

1 half straight m subscript 1 straight u subscript 1 squared space plus 1 half straight m subscript 2 straight u subscript 2 squared space equals space 1 half straight m subscript 1 straight v subscript 1 squared space plus space 1 half straight m subscript 2 straight v subscript 2 squared

rightwards double arrow space space straight m subscript 1 space left parenthesis straight u subscript 1 squared space minus space straight v subscript 1 squared space right parenthesis space equals space straight m subscript 2 space left parenthesis space straight v subscript 2 squared space minus space straight v subscript 1 squared right parenthesis space space space space space space space space space space space space... space left parenthesis 2 right parenthesis thin space

Dividing space left parenthesis 2 right parenthesis space by space left parenthesis 1 right parenthesis comma space we space get space

left parenthesis straight u subscript 1 space plus space straight v subscript 1 right parenthesis space equals space left parenthesis space straight v subscript 2 space plus space straight u subscript 2 right parenthesis space

rightwards double arrow space straight u subscript 1 space minus space straight u subscript 2 space equals space straight v subscript 2 space minus space straight v subscript 1 space
 
That is, relative velocity of approach is equal to relative velocity of separation.
Hence the result.