-->

Is Matter Around Us Pure

Question
CBSEENSC9005957

State and explain Newton’ s third law of motion.

Solution

Newton’s third law of motion.
According to Newton's third law, to every action, there is an equal and opposite reaction.
When one objects exerts a force (action) on another object, then the second object also exerts a force (reaction) on the first.
These two forces are always equal in magnitude but opposite in direction.

Fig. Action of Newton’s third law.

As shown in fig.,
If straight F with rightwards arrow on top subscript AB is the force exerted by body A on B and straight F with rightwards arrow on top subscript BA is the force exerted by B on A, then according to Newton's third law,
                    straight F with rightwards arrow on top subscript BA space equals space minus straight F with rightwards arrow on top subscript AB space
We can see that the forces are equal and opposite. 
According to the third law of motion, single force can never exist.
The forces always exist in pairs.
The two opposing forces are known as action and reaction forces.
But the forces of action and reaction always act on two different bodies. 

Some More Questions From Is Matter Around Us Pure Chapter

Which separation techniques will you apply for the separation of the following?

Iron pins from sand.

Which separation techniques will you apply for the separation of the following?

Wheat grains from husk

Which separation techniques will you apply for the separation of the following?


Fine mud particles suspended in water.

Write the steps you would use for making tea. Use the words—solution, solvent, solute, dissolve, soluble, insoluble, filtrate and residue.

Pragya tested the solubility of three different substances at different temperatures and collected the data as given below (results are given in the following table, as grams of substance dissolved in 100 grams of water to form a saturated solution).

Substance Dissolved

Temperature in K

283

293

313

333

353

Potassium nitrate

21

32

62

106

107

Sodium chloride

36

36

36

37

37

Potassium chloride

35

35

40

46

54

Ammonium chloride

24

37

41

55

66



What mass of potassium nitrate would be needed to produce a saturated solution of potassium nitrate in 50 grams of water at 313 K?

Pragya makes a saturated solution of potassium chloride in water at 353 K and leaves the solution to cool at room temperature. What would she observe as the solution cools? Explain.

Substance Dissolved

Temperature in K

283

293

313

333

353

Potassium nitrate

21

32

62

106

107

Sodium chloride

36

36

36

37

37

Potassium chloride

35

35

40

46

54

Ammonium chloride

24

37

41

55

66



Find the solubility of each salt at 293 K. Which salt has the highest solubility at this temperature?

Substance Dissolved

Temperature in K

283

293

313

333

353

Potassium nitrate

21

32

62

106

107

Sodium chloride

36

36

36

37

37

Potassium chloride

35

35

40

46

54

Ammonium chloride

24

37

41

55

66



Pragya tested the solubility of three different substances at different temperatures and collected the data as given below (results are given in the following table, as grams of substance dissolved in 100 grams of water to form a saturated solution).

Substance Dissolved

Temperature in K

283

293

313

333

353

Potassium nitrate

21

32

62

106

107

Sodium chloride

36

36

36

37

37

Potassium chloride

35

35

40

46

54

Ammonium chloride

24

37

41

55

66


What is the effect of change of temperature on the solubility of a salt?

Explain the following giving examples:

Saturated solution

Explain the following giving examples:

Pure substance