-->

Three Dimensional Geometry

Question
CBSEENMA12036289

If L1 is the line of intersection of the plane 2x – 2y + 3z – 2 = 0, x – y + z + 1 = 0 and L2 is the line of intersection of the plane x + 2y – z – 3 = 0, 3x – y + 2z – 1 = 0, then the distance of the origin from the plane containing the lines L1
and L2 is :

  • 12

  • 142

  • 132

  • 122

Solution

C.

132

L1 is parallel to i^j^k^2-231-11 = i^ + j^L2 is parallel to i^j^k^12-13-12 = 3i^ -5j^-7k^Also, L2 passes through 57,87,0So required plane is x-57y-87z1103-5-7 = 0 7x -7y + 8z + 3 = 0Now, perpendicular distance  = 3162 = 132