-->

Three Dimensional Geometry

Question
CBSEENMA12036274

If the straight lines x = 1 + s, y = –3 – λs, z = 1 + λs and x = t/ 2 , y = 1 + t, z = 2 – t with parameters s and t respectively, are co-planar then λ equals

  • –2

  • –1

  • -1/2

  • 0

Solution

A.

–2

Given fraction numerator straight x minus 1 over denominator 1 end fraction space equals space fraction numerator straight y plus 3 over denominator negative straight lambda end fraction space equals space fraction numerator straight z minus 1 over denominator straight lambda end fraction space equals space straight s space space and space fraction numerator straight x over denominator 1 divided by 2 end fraction space equals fraction numerator straight y minus 1 over denominator 1 end fraction space equals fraction numerator straight z minus 2 over denominator negative 1 end fraction space equals space straight t  are coplanar then plan passing through these lines has normal perpendicular to these lines
⇒ a - bλ + cλ = 0 and a/2 +b -c =0 (where a, b, c are direction ratios of the normal to the plan) On solving, we get λ = -2.

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.