-->

Three Dimensional Geometry

Question
CBSEENMA12036273

A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by

  • (3a, 3a, 3a), (a, a, a)

  • (3a, 2a, 3a), (a, a, a)

  • (3a, 2a, 3a), (a, a, 2a)

  • (2a, 3a, 3a), (2a, a, a)

Solution

B.

(3a, 2a, 3a), (a, a, a)

Any point on the line straight x over 1 space equals fraction numerator straight y plus straight a over denominator 1 end fraction space equals straight z over 1 space equals space straight t subscript 1 space left parenthesis say right parenthesis space is space left parenthesis straight t subscript 1 comma space straight t subscript 1 minus straight a comma space straight t subscript 1 right parenthesis and any point on the line fraction numerator straight x plus straight a over denominator 2 end fraction space equals space straight y over 1 space equals straight z over 1 space equals space straight t subscript 2 space left parenthesis say right parenthesis space is space left parenthesis 2 straight t subscript 2 minus straight a comma space straight t subscript 2 comma space straight t subscript 2 right parenthesis
Now direction cosine of the lines intersecting the above lines is proportional to (2t2 – a – t1, t2 – t1 + a, t2 – t1).
Hence 2t2 – a – t1 = 2k , t2 – t1 + a = k and t2 – t1 = 2k
On solving these, we get t1 = 3a , t2 = a. Hence points are (3a, 2a, 3a) and (a, a, a).

Some More Questions From Three Dimensional Geometry Chapter

Find the direction cosines of x, y and z-axis.