-->

Vector Algebra

Question
CBSEENMA12036116

If the vectors bold a bold space bold equals bold space bold i with bold hat on top bold space bold minus bold j with bold hat on top bold space bold plus bold 2 bold k with bold hat on top bold comma bold space bold b bold space bold equals bold 2 bold i with bold hat on top bold space bold plus bold 4 bold j with bold hat on top bold space bold plus bold k with bold hat on top bold space bold and bold space bold c bold space bold equals bold space bold lambda bold i with bold hat on top bold space bold plus bold j with bold hat on top bold space bold plus bold mu bold k with bold hat on top are mutually orthogonal, then (λ,μ) is equal to

  • (-3,2)

  • (2,-3)

  • (-2,3)

  • (3,-2)

Solution

A.

(-3,2)

since, the given vectors mutually orthogonal, therefore
a.b = 2-4+2 = 0
a.c = λ-1 + 2μ = 0   ....(i)
b.c = 2λ + 4 +μ = 0  ... (ii)
On solving Eqs. (i) and (ii), we get
μ  = 2 and λ = - 3
Hence, (λ,μ) = (-3,2)

Some More Questions From Vector Algebra Chapter

The Boolean Expression (p∧~q)∨q∨(~p∧q) is equivalent to: