-->

Application Of Derivatives

Question
CBSEENMA12036149

Given P(x) = x4+ ax3 + cx + d such that x = 0 is the only real root of P′ (x) = 0. If P(–1) < P(1),then in the interval [–1, 1].

  • P(–1) is the minimum and P(1) is the maximum of P

  • P(–1) is not minimum but P(1) is the maximum of P

  • P(–1) is the minimum but P(1) is not the maximum of P

  • neither P(–1) is the minimum nor P(1) is the maximum of P

Solution

B.

P(–1) is not minimum but P(1) is the maximum of P

P(x) = x4+ ax3+ bx2+ cx + d
P′(x) = 4x3+ 3ax2+ 2bx + c
As P′(x) = 0 has only root x = 0
⇒ c = 0
P′(x) = x(4x2+ 3ax + 2b)
⇒ 4x3+ 3ax + 2b = 0 has non real root.
and 4x2+ 3ax + 2b > 0 ∀ x ∈ [−1, 1].

As P(−1) < P(1) ⇒ P(1) is the max. of P(x) in [−1, 1]