-->

Integrals

Question
CBSEENMA12036045

The equation of the plane containing the line 2x-5y +z = 3, x +y+4z = 5 and parallel to the plane x +3y +6z =1 is

  • 2x + 6y + 12z = 13

  • x+3y+6z = -7

  • x+3y +6z = 7

  • 2x+ 6y+12z = - 13

Solution

C.

x+3y +6z = 7

Let equation of plane containing the lines 2x- 5y +z = 3 and x+y+4z = 5 be
(2x-5y+z-3) + λ(x+y+4z-5) = 0
⇒ (2+λ)x + (λ-5)y + (4λ + 1)z -3 -5λ =0... (i)
This plane is parallel to the plane x +3y +6z = 1
therefore space fraction numerator 2 plus straight lambda over denominator 1 end fraction space equals space fraction numerator straight lambda minus 5 over denominator 3 end fraction space equals space fraction numerator 4 straight lambda plus 1 over denominator 6 end fraction
On taking first two equalities, we get
6λ -30 = 3 + 12λ
-6λ = 33
λ = - 11/2
So, the equation of required plane is
open parentheses 2 minus 11 over 2 close parentheses space straight x space plus open parentheses fraction numerator negative 11 over denominator 5 end fraction minus 5 close parentheses straight y space plus open parentheses fraction numerator negative 44 over denominator 2 end fraction plus 1 close parentheses straight z space minus 3 space plus space 5 straight x space 11 over 2 space equals space 0
rightwards double arrow negative 7 over 2 space straight x minus 21 over 2 straight y minus 42 over 2 straight z plus 49 over 2 space equals space 0
rightwards double arrow space straight x space plus space 3 straight y space plus 6 straight z minus 7 space equals space 0

Some More Questions From Integrals Chapter